Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 30 (2003) 133–145 STRUCTURE OF THE GROUP OF QUASI MULTIPLICATIVE ARITHMETICAL FUNCTIONS

نویسندگان

  • Štefan Porubský
  • Péter Kiss
چکیده

The structure of the group of quasi multiplicative arithmetical functions such that f(1) 6=0 with respect to Dirichlet and the more general Davison convolution via an isomorphism to a subgroup of upper triangular and Toeplitz matrices will be described. AMS Classification Number: 11A25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Number Theoretic Applications of the Smallest Denominator Function

We show that the smallest denominator function can be treated with a minimum amount of number theory. Moreover, this function can be used to nicely prove a number of fundamental divisibility and irrationality results. Acta Mathematica Academiae Paedagogicae Ny regyh aziensis 15 (1999), 19{26 www.bgytf.hu/~amapn

متن کامل

Commutative rings in which every finitely generated ideal is quasi-projective

This paper studies the multiplicative ideal structure of commutative rings in which every finitely generated ideal is quasi-projective. Section 2 provides some preliminaries on quasi-projective modules over commutative rings. Section 3 investigates the correlation with well-known Prüfer conditions; namely, we prove that this class of rings stands strictly between the two classes of arithmetical...

متن کامل

On the binomial convolution of arithmetical functions

Let n = ∏ p p νp(n) denote the canonical factorization of n ∈ N. The binomial convolution of arithmetical functions f and g is defined as (f ◦g)(n) = ∑ d|n (∏ p (νp(n) νp(d) )) f(d)g(n/d), where ( a b ) is the binomial coefficient. We provide properties of the binomial convolution. We study the Calgebra (A,+, ◦,C), characterizations of completely multiplicative functions, Selberg multiplicative...

متن کامل

On Proofs About Threshold Circuits and Counting Hierarchies (Extended Abstract)

We define theories of Bounded Arithmetic characterizing classes of functions computable by constantdepth threshold circuits of polynomial and quasipolynomial size. Then we define certain second-order theories and show that they characterize the functions in the Counting Hierarchy. Finally we show that the former theories are isomorphic to the latter via the socalled RSUV -isomorphism.

متن کامل

Arithmetical Functions I: Multiplicative Functions

Truth be told, this definition is a bit embarrassing. It would mean that taking any function from calculus whose domain contains [1,+∞) and restricting it to positive integer values, we get an arithmetical function. For instance, e −3x cos2 x+(17 log(x+1)) is an arithmetical function according to this definition, although it is, at best, dubious whether this function holds any significance in n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008